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Abstract

While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever

retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and

Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement

with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed

to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and

inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results

confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls.

At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may

have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

For many decades, the seismic analysis of retaining walls

has been based on the simple extension of Coulomb’s limit-

equilibrium analysis, which has become widely known as

the Mononobe–Okabe method ([14,11]). The method,

modified and simplified by Seed and Whitman [19], has

prevailed mainly due to its simplicity and the familiarity of

engineers with the Coulomb method.

Experimental studies in the 1960s and 1970s using small-

scale shaking table tests proved in many cases that the

Mononobe–Okabe method was quite realistic, at least if the

outward displacement of the wall (either due to translation,

or rotation, or bending deformation) was large enough to

cause the formation of a Coulomb-type sliding surface in the

retained soil. A significant further development on the

Mononobe–Okabe method has been its use by Richards

and Elms [17] in determining permanent (inelastic)
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outward displacements using the Newmark sliding block

concept [13].

However, in many real cases (basement walls, braced

walls, bridge abutments, etc.) the kinematic constraints

imposed on the retaining system would not lead to the

development of limit-equilibrium conditions, and thereby

increased dynamic earth pressures would be generated [7].

Elastic analytical solutions were first published by Scott [18],

Wood [24], and Arias et al. [3]. The Wood solution referred to

an absolutely rigid wall fixed at its base; the derived elastic

dynamic earth pressures are more than two times higher than

the pressures obtained with the limit-equilibrium methods.

This fact, and the scarcity of spectacular failures of retaining

walls during earthquakes, led to the widely-held impression

that the elastic methods are over-conservative and inappropri-

ate for practical use. This was the main reason for the nearly

exclusive use of Mononobe–Okabe (and Seed–Whitman)

method in engineering practice.

The two groups of methods mentioned above (elastic and

limit-equilibrium) seem to cover the two extreme cases. The

elastic methods regard the soil as a visco-elastic continuum,

while limit-equilibrium methods assume rigid plastic

behaviour. Efforts to bridge the gap between the above

extremes have been reported by Whitman and his
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Fig. 1. Typical dynamic pressure distributions proposed in seismic bridge codes for seismic analysis of abutments. Situations (a) and (b) correspond to the two

extreme cases: (a) of yielding wall supporting elasto-plastic soil in limit equilibrium, and (b) of undeformable and non-yielding wall supporting purely elastic

soil. For intermediate size of wall displacements: DPZ0.75(a0gH2).

Fig. 2. The systems examined in this study: (a) flexible wall elastically

restrained at its base, and retaining a homogeneous soil layer, (b) flexible

wall elastically restrained at its base, and retaining an inhomogeneous soil

layer, and (c) rigid gravity wall in a two-layer soil system.
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co-workers ([1,2,12]). Their analyses combine wave

propagation in a visco-elastic continuum with concentrated

plastic deformation on a failure surface.

Based on the aforementioned categorization, many codes

estimate the dynamic earth pressures according to the

potential of the wall to deform. For example, the Greek

Regulatory Guide E39/93 [16], referring to the seismic

analysis of bridge abutments, proposes three different cases

for the calculation of the dynamic earth pressures depending

on the ratio between the displacement at the top of the wall

u to its height H (see Fig. 1). As it is possible for the wall–

soil system to develop material (or even geometric) non-

linearities, it is difficult to distinguish the limits between the

three cases. The main reason is that the displacement U

cannot be predefined. It is obvious though, that the

minimum dynamic earth pressures are predicted in the

case of flexible walls (u/HO0.10%), while the dynamic

pressures are almost 2.5 times higher in the case of perfectly

rigid immovable walls (u/Hz0). For intermediate cases, the

dynamic earth pressures are somewhere between the

maximum and minimum value (see Ref. [15]).

It was not until recently that Veletsos and Younan

[21–23] proved that the very high dynamic earth pressures

of the elastic methods are attributed to the assumptions of

rigid and fixed-based wall, which are an oversimplification

of reality. To overcome this limitation, they developed an

analytical solution that could account for the structural

flexibility of the wall and/or the rotational compliance at its

base; the latter was achieved through a rotational spring at

the base of the wall. They discovered that the dynamic

pressures depend profoundly on both the wall flexibility and

the foundation rotational compliance, and that for realistic

values of these factors the dynamic pressures are substan-

tially lower than the pressures for a rigid, fixed-based wall.

In fact, they found out that the dynamic pressures may

reduce to the level of the Mononobe–Okabe solution if

either the wall or the base flexibility is substantial.

However, these analytical solutions are based on the

assumption of homogeneous retained soil, and there are

reasons for someone to believe that the potential soil

inhomogeneity may lead to significant changes in the

magnitude and distribution of the dynamic earth pressures.

Furthermore, as the presence of the foundation soil layers
under the retained system is only crudely modelled through

a rotational spring, these solutions do not account for the

potential horizontal translation at the wall base, which in

general may have both an elastic and an inelastic (sliding)

component.

In the present paper, after a numerical verification of the

analytical solution of Veletsos and Younan (utilising the

finite-element method), the versatility of the finite-element

method permits the treatment of some more realistic

situations that are not amenable to analytical solution. So

the modelling was extended to account for: (a) soil

inhomogeneity of the retained soil, and (b) translational
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flexibility of the wall foundation. Fig. 2 outlines the cases

studied in this paper. Evidently:
†
 Case (a) coincides with the single-layer case studied in

[23], where the retained soil is characterized by

homogeneity.
†
 Case (b) models the same single-layer case, but the

retained soil is inhomogeneous, with the shear modulus

vanishing at the soil surface.
†
 Case (c) refers to a rigid wall founded on a soil stratum.

The results show that the inhomogeneity of the retained

soil leads to reduced earth pressures near the top of the wall,

especially in the case of very flexible walls, while the

compliance of the foundation may not easily be modelled by

a single rotational spring, due to wave propagation

phenomena.
2. Flexible cantilever wall

2.1. Case A: homogeneous soil

Veletsos and Younan in 1997 [23] developed an

analytical approach for evaluating the magnitude and

distribution of the dynamic displacements, pressures, and

forces induced by horizontal ground shaking in walls that

are both flexible and elastically constrained against rotation

at their base. The simplicity of their analytical tool

permitted the assessment of the effects and relative

importance of the factors involved.

In their model, the soil is considered to act as a uniform,

infinitely extended visco-elastic stratum of height H. The

properties of the soil are regarded constant, and defined by

the density r, the shear modulus G, and Poisson’s ratio n.

The material damping is presumed to be of the constant

hysteretic type and is defined by the critical damping

ratio x.

The layer is free at its upper surface, fixed on a rigid base,

and it is retained by a vertical, flexible wall, elastically

constrained against rotation at its base. The properties of the

wall are described by its thickness tw, mass per unit of

surface area mw, modulus of elasticity Ew, Poisson’s ratio n,

and critical damping ratio xw. The stiffness of the rotational

base constraint is denoted by Rq.

The bases of the wall and the soil stratum are considered

to be excited by a space-invariant horizontal motion,

assuming an equivalent force-excited system.

The factors examined are the characteristics of the

ground motion, the properties of the soil stratum, and the

flexibilities of the wall and the rotational constraint at its

base. Emphasis is given on the long-period—effectively

static—harmonic excitations. The response for a dynami-

cally excited system is then given as the product of the

corresponding static response with an appropriate amplifi-

cation (or de-amplification) factor.
The whole approach is based on the following simplify-

ing assumptions:
†
 no de-bonding or relative slip is allowed to occur at the

wall–soil interface.
†
 no vertical normal stresses develop anywhere in the

medium, i.e. syZ0, under the considered horizontal

excitation.
†
 the horizontal variations of the vertical displacements are

negligible.
†
 the wall is considered to be massless.

While the first assumption was made in order to obtain a

simplified model, the other three assumptions were made to

simplify the solution of the resulting equations that describe

the behaviour of the model.

The main parameters that affect the response of the

system are the relative flexibility of the wall and retained

soil, defined by

dw Z
GH3

Dw

(1)

and the relative flexibility of the rotational base constraint

and retained soil, defined by

dq Z
GH2

Rq

(2)

Dw in Eq. (1) denotes the flexural rigidity per unit of

length of the wall:

Dw Z
Ewt3

w

12ð1 Kv2
wÞ

(3)

What also affect the response are the characteristics of

the input base motion. For a harmonic excitation the

response is controlled by the frequency ratio u/u1, where u

is the dominant cyclic frequency of the excitation, and u1

the fundamental cyclic frequency of the soil stratum.
2.1.1. Numerical modelling

This study focuses primarily on the numerical verifica-

tion of the analytical results of Veletsos and Younan, using

exactly the same model for the wall–soil system. The

purpose was to validate the assumptions of the analytical

solution and to define the range of its applicability.

Presuming plane-strain conditions, the numerical anal-

ysis was two-dimensional, and was performed using the

commercial finite-element package ABAQUS [8]. The finite-

element model of the wall–soil system examined is shown

in Fig. 3.

By trial analyses it was established that the magnitude of

the wall pressures is proportional to the wall height, which

was also noted in the analytical solution. Taking that

into account, all the analyses were performed considering

an 8 m-high wall. The wall itself was discretized by

beam elements, of unit longitudinal dimension



Fig. 3. The finite-element discretization of the examined single-layer systems. The base of the model is fixed, while absorbing boundaries have been placed on

the right-hand artificial boundary.
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and thickness twZ0.20 m. Given the value of dw, the

modulus of elasticity of the wall Ew derives from Eqs. (1)

and (3), while the Poisson’s ratio is 0.2. The wall mass per

unit of surface area mw is presumed to be 2.5 t/m2. It is

reminded that Veletsos and Younan had regarded the wall as

massless. At the base of the wall a rotational constraint was

placed, the stiffness of which is denoted by Rq. Eq. (2)

relates dq with Rq.

The discretization of the retained soil is made by two-

dimensional, four-noded quadrilateral, plane-strain

elements. Since, the finite-element grid cannot extend

infinitely, there is a need for using absorbing boundaries

in order to simulate the radiation of energy. The latter is

achieved using horizontal and vertical viscous dashpots,

which absorb the radiated energy from the P and S waves,

respectively. The efficiency of the viscous dashpots is in

general quite acceptable, but as it depends strongly on the

angle of incidence of the impinging wave the dashpots were

placed 10H away from the wall to improve the accuracy of

the simulation (see Fig. 3). The soil is presumed to act as a

visco-elastic material. Trial analyses indicated that the wall

pressures are not directly affected by the shear modulus

value of the retained soil. The shear modulus value affects

the wall pressures indirectly via the relative flexibility

factors (dw and dq), and the eigenfrequency of the soil

stratum. Therefore, for the analyses presented in this section

the density r and the shear wave velocity VS are assumed to

be 1.8 t/m3 and 100 m/s, respectively. Furthermore, the

Poisson’s ratio n is presumed to be 1/3, while critical

damping ratio x is 5%.

Regarding the wall–soil interface, although the option of

de-bonding and relative sliding was available in ABAQUS [8],

the assumption of complete bonding—made by Veletsos and

Younan—was also adopted to permit a comparative study.

The excitation was introduced by a prescribed accelera-

tion time history on the nodes of the wall and the soil-

stratum bases. The case of harmonic excitation was

examined:

AðtÞ Z A0 sinðutÞ; where A0 Z 1 m=s2 (4)
The duration chosen for all numerical analyses was such

that steady state conditions were always reached.
2.1.2. Problem parameters

The dimensionless parameters of the problem examined

are three: the relative flexibility factors dw and dq, and the

ratio of the cyclic frequency of the excitation to the

fundamental cyclic eigenfrequency of the soil layer u/u1.

The values of parameters were the following:
dwZ0 (rigid wall), 1, 5, and 40
dqZ0 (fixed against rotation), 0.5, 1, and 5
u/u1Z1/6 (practically static case), 1 (resonance), and 3

(high-frequency motion).
2.1.3. Quasi-static response

Initially, the response of the system under nearly static

excitation is examined. Practically, that is achieved by a

harmonic ground motion with frequency very low compared

to the fundamental eigenfrequency of the soil stratum

(u/u1Z1/6). For this value of frequency ratio, all the

possible combinations of the parameters dw and dq are

considered.

The heightwise distributions of the statically induced

wall pressures sstZsst(h) for systems with different values

of the relative flexibility factors dw and dq are shown in

Fig. 4. The values of the pressures, plotted on the

horizontal graph axis, are normalized with respect to

a0gH, where a0 is the maximum acceleration at the base

expressed in g, g is the unit weight of the retained soil,

and H is the height of the wall. On the vertical graph axis,

the y-coordinate of the corresponding point along the

inner side of the wall, normalized with respect to the

wall’s height is plotted (hZy/H). The pressures are

considered positive when they induce compression on the

wall. Note that all the results presented in this paper refer

to the incremental (dynamic) loads due to horizontal

shaking.

It is observed that, for relatively high values of dw and dq,

negative pressures (i.e. tensile stresses) are developed near



Fig. 4. Earth-pressure distribution of a quasi-statically excited retaining system with varying relative flexibility, dq , of the base rotational spring for different

values of relative wall flexibility, dw.
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the top of the wall. In case that the absolute value of these

stresses exceeds the initial geostatic stresses, de-bonding

will occur, making the initial assumption unrealistic.

Therefore, it was decided—and it is suggested—to ignore

these tensile stresses when integrating the wall pressures in

order to calculate the resultant force and the corresponding

overturning moment.

Notice that, as the values of the relative flexibility

factors increase, the wall pressures decrease. It is reminded

that the increase of dw and dq implies increase of the

flexibility of the wall and its base. Apart from the pressure

decrease—which affects the resultant force on the wall (see

Fig. 5(a))—the increased values of dw and dq have an

additional beneficial effect. For relatively rigid systems

there is a sinusoidal-like increase of the pressures from the

base to the top of the wall, while flexible systems tend to

exhibit a triangular-like distribution. As a consequence, the

corresponding overturning moment of flexible walls (see

Fig. 5(b)) is reduced due to the effective height decrease

(see Fig. 6).

It is interesting to compare (Fig. 5) the resultant

forces and overturning moments, with the ones proposed

by Seed and Whitman [19], which are based on

Mononobe–Okabe method and the accumulated exper-

imental experience:

DPE Z 0:375a0gH2 (5)
DME Z ð0:6HÞDPE (6)

According to Figs. 5 and 6, it is evident that:
†
 in the case of very flexible walls (high values of dw)

the resultant force and the corresponding overturning

moment are quite insensitive to the variation of the

base flexibility (values of dq).
†
 the results of the proposed model are in agreement

with the ones derived by [19], as far as base shear is

concerned, when the base flexibility is relatively high

(dqZ5).
†
 the above remark is not valid for the case of

the overturning moment, mainly because of the

conservative estimation of the effective height made

by Seed and Whitman. Note that in Fig. 6 the upper

limit and the lower limit of the effective height

coincide with the value proposed by Seed and

Whitman (0.6H) and Mononobe–Okabe method

(0.33H), respectively.

Of special interest is the horizontal distribution of the

normal and shear stresses in the retained soil, shown in

Fig. 7. The results presented correspond to the stress

conditions along a straight horizontal line in the middle of

the soil layer for the two extreme cases examined—dwZ0,

dqZ0 and dwZ40, dqZ5. The increase in the flexibility of



Fig. 5. Normalized values of resultant dynamic horizontal force (DPE)st and

resultant dynamic overturning moment (DME)st on a pseudo-statically

excited wall, with different wall and base flexibilities (dw and dq), compared

with the values proposed by Seed and Whitman in [19].

Fig. 7. Distribution of horizontal normal stresses (sx) and shear stresses

(txy) developed along a horizontal line at mid-depth in the retained soil for

pseudo-static excitation for rigid and flexible wall.
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the system decreases the percentage of the developed

inertial forces transferred to the retaining wall through the

soil extensional stiffness to those transferred to the layer

base through its shear stiffness. This was rather expected
0.3

0.4

0.5

0.6

0 10 20 30 40
dw

h 
/ H

d  = 0
d  = 1
d  = 5

Fig. 6. Normalized height h from the base of the resultant force on the wall

(called ‘effective’ height by Veletsos and Younan [23]) for quasi-statically

excited systems, having different wall and base flexibilities (dw and dq).
and explains the variation of the magnitude of the wall

pressures shown in Fig. 4.

Knowing the distribution of normal and shear stresses

developed in the retained soil, it is feasible to assess

the validity of the assumption regarding no relative sliding

along the wall–soil interface. The friction angle between the

wall and the retained soil can be taken as dz4/2, where 4 is

the internal friction angle of the soil. For typical values of 4

(30–358) sliding does not occur when the following

condition is satisfied:

txy=sx % tan dz0:3 (7)

Obviously, Eq. (7) cannot be used as-is to compute the

exact value of the stress ratio necessary to cause slipping at

the wall–soil interface, because the initial state of stress is

not known. Nevertheless, ratios txy/sxO1.0 (the case of

flexible walls, Fig. 8) indicate that no matter what the static
Fig. 8. Comparison of shear and normal stresses at the wall–soil interface in

the case of statically excited systems with different wall and base

flexibilities (dw and dq).
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state of stress is before shaking, slippage will definitely

occur.
2.1.4. Analytical verification of the quasi-static response

In this section, a comparison between the analytical

solution given by Veletsos and Younan and the numerical

results presented in the previous section is performed. The

distributions of seismic wall pressures in the case of

statically excited systems and for different wall and base

flexibilities (dw and dq) are shown in Fig. 9. The analytical

solution is represented by continuous line, while dots have

been used for the representation of the numerical results. In

general, the two solutions are in good agreement for every

combination of flexibilities, while the only discrepancy

observed is near the top of the wall, especially in the case of

systems with low flexibility. The distributions resulting

from the numerical solution exhibit a concave deviation

while approaching the free surface. This phenomenon has

also been observed by other researchers (see Ref. [24]) and

characterizes numerical solutions. This comparison estab-

lishes, at least to a point, the validity of the assumptions

made in the analytical solution, regarding the vertical

normal stresses and the mass of the wall.

Though the wall pressures predicted by the analytical

formulation and the numerical model seem to be in

agreement, the same is not observed for the base shear

and the overturning moment, as shown in Fig. 10. It is
Fig. 9. Comparison of the distributions of the earth pressures on the wall computed

Younan in [23]. Quasi-statically excited fixed-base walls (dqZ0) with different w
reminded that in the post-processing of the numerical

results, tensile stresses have been regarded as unrealistic,

and therefore, ignored. As a consequence, the ‘produced’

results (base shear and overturning moment) tend to be in

agreement only in the case of rigid systems, where no tensile

stresses are developed, while, on the other hand, the

analytical solution underestimates both the base shear and

the overturning moment in the case of flexible systems. It is

worth mentioning that the discrepancies observed are more

substantial for the overturning moment, and may even lead

to a 50% increase of the corresponding analytical ones. That

fact seems quite logical considering the double effect of the

tensile stresses: (a) the reduction of the base shear, and (b)

the reduction of the corresponding effective height.
2.1.5. Harmonic response

Typical values for the fundamental frequency of the soil

stratum may be between 2 and 15 Hz, while the dominant

frequency of a seismically induced excitation ranges from 2

to 5 Hz. Thus, the case of statically excited systems examined

before may be encountered in practice, apart from its

theoretical interest. Nevertheless, it is obvious that resonance

phenomena are also possible. For all possible combinations

of dw and dq, two values of the frequency ratio are examined:
with

all
u/u1Z1 (resonance)
u/u1Z3 (high-frequency motion).
our numerical method and those computed analytically by Veletsos and

flexibilities dw.



Fig. 10. Comparison between the normalized values of base shear (DPE)st

and overturning moment (DME)st from the analytical formulation

(continuous line) of Veletsos and Younan in [23] and those of the

numerical simulation (dots) of our study. Quasi-statically excited systems

with different wall and base flexibilities (dw and dq).

Fig. 11. Steady-state earth pressure distribution for three excitation

frequencies: uZu1, uZu1/6, and uZ3u1, where u1 is the fundamental

frequency of the wall–layer system.
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As previously mentioned the analyses were performed

assuming constant height and constant shear wave velocity

of the soil stratum. Therefore, u1 was constant for all

analyses, and the variability in u/u1 was undertaken by

varying u.

Fig. 11 shows the effect of the excitation frequency on

the magnitude and the distribution of the wall pressures only

for the extreme cases of flexibility examined: rigid wall

(dwZ0, dqZ0), and very flexible wall (dwZ40, dqZ5).

Comparing the wall pressure distribution in the case of

resonance (u/u1Z1) with that of the corresponding static

excitation, the following conclusions may be drawn:
†
 for every combination of dw and dq the pressures are

increased in the case of soil resonance.
†
 the amount of increase is highly depended on the

flexibility of the wall and its base. For low values of

flexibility the dynamic amplification factor is about 3,

while for higher values the amplification factor may be of

the order of 7.
†
 the shape of the heightwise pressure distribution is not

changed substantially, as the increase takes place

uniformly.
In the case that u/u1Z3, a similar comparison leads to

the following conclusions:
†
 this case is ‘beneficial’ for the wall itself, since the

pressures are lower for every combination of flexibility.
†
 the amount of decrease is practically independent on the

values of dw and dq.
†
 the shape of the heightwise pressure distribution is

different than the corresponding static, mainly due to the

contribution of higher modes of vibration.

The above qualitative conclusions are expressed quan-

titatively in Fig. 12, where the maximum amplification

factor for the resultant force (AQ) and the corresponding

overturning moment (AM) are shown.

The increase of the amplification factor that is observed

in Fig. 12 can be explained by the distribution of horizontal

maximum acceleration in the backfill. The acceleration was

recorded along two horizontal levels of height H and H/2

with respect to the base level. The results are plotted in

Fig. 13, normalized to the maximum ground base accelera-

tion, so as to express the amplification in the retained soil

layer. It is evident that in the case of rigid and fixed wall

(Fig. 13(a)) the motion in the vicinity of the wall is
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respectively, in case of a harmonically excited system with different wall

and base flexibilities (dw and dq).
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practically induced by the wall itself, therefore, no

amplification is observed. On the other hand, flexible

systems (Fig. 13(b)) permit shear deformation, and conse-

quently, higher levels of acceleration. In all cases, the

amplification factor is maximized at a distance of about 3H

from the wall. Like in the case of static loading (see Fig. 7),

at that distance one-dimensional conditions are present, so
Fig. 13. Soil amplification of steady-state acceleration at resonance (uZ
u1), along the surface (hZ1) and the mid-depth (hZ0.5) of the retained

soil.
the expected maximum amplification factor for a soil layer

with critical damping ratio x (see Roesset [25] and Kramer

[26]) is given by:

A Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 p
2

Cnp
� �

C x p
2

Cnp
� �� �2

q Z
2

px

1

2n C1
(8)

which for nZ0 (first mode) and xZ5% leads to Az12.5.

This value is very close to that predicted by the numerical

model, a fact that is indicative of the realistic simulation of

the problem and its boundary conditions.

It is obvious that the assumption of uniform acceleration

field in the retained soil, adopted by the limit-state methods,

is not realistic for the case of dynamic excitation. Ignoring

the amplification phenomena will likely lead to under-

estimation of the seismically induced wall pressures.

Nevertheless, such high levels of amplification would not

occur in the case of a transient excitation. According to

Veletsos and Younan [23], who examined analytically the

transient response of the system under the 1940 El Centro

excitation, the dynamic amplification factors range between

1.5 and 2 for total wall force, while the effective wall height

seems rather insensitive to the ground motion. It is believed,

however, that in cases of excitations characterized by

narrow spectra with dominant frequencies (or periods) close

to the fundamental eigenfrequency of the soil stratum, the

amplification may be substantially higher, perhaps even

approaching the values of harmonic loading at resonance.
2.2. Case B: inhomogeneous soil

In the previous sections, the properties of the retained

soil were presumed constant. In reality, the soil shear

modulus is likely to increase with depth. Such a inhom-

ogeneity reflects in a very simple way, not only the

unavoidably-reduced stiffness under the small confining

pressures prevailing near the top, but two more strong-

shaking effects:
(a)
 the softening of the soil due to large shearing

deformations, and
(b)
 the non-linear wall–soil interface behaviour, including

separation and slippage.
Note that this feature is too complicated to be

incorporated in analytical formulations. Veletsos and

Younan have examined analytically the inhomogeneity

with depth, regarding a rigid wall elastically constrained

against rotation at its base. To simplify, the equations of

motion a specific parabolic variation of the shear modulus

was used. The extension of the analytical solution to

include the flexibility of the wall and/or additional

variations of the shear modulus seems to be difficult.

Here lies the greatest advantage of the finite-element

method, which can cope boundlessly at least with the

aforementioned features.



Fig. 15. Effect of soil inhomogeneity on the elastic dynamic earth-pressure
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The response of statically excited wall–soil systems is

examined, taking into account apart from the rotational

flexibility, the flexibility of the wall, considering the

following expression of the variation of the shear wave

velocity (see Ref. [20]):

VS Z mðH KyÞ2=3 (9)

where m is a parameter chosen so as the mean shear wave

velocity VS to be 100 m/s, and to permit the comparison

with the results presented in the previous sections.

The finite-element model that was used, was the same

with the one described in the previous sections (see Fig. 3),

subjected to the necessary modifications regarding the

varying soil properties. The values of the relative flexibility

factors dw and dq are given by

dw Z
�GH3

Dw

(10)

dq Z
�GH2

Rq

(11)

where G is the mean value of the shear modulus.

For the variation of the shear wave velocity considered

here, the fundamental cyclic frequency of the retained soil
Fig. 14. Earth pressure distributions for statically excited walls retaining

inhomogeneous soil, with different wall and base flexibilities (dw and dq).

distribution for a rigid fixed-base wall (dwZ0, dqZ0) and for a flexible

fixed-base wall (dwZ40, dqZ0). Comparison with the corresponding

curves for the homogeneous soil from Fig. 4.
layer can be proven (see Ref. [20]) to be

u1 Z
p

3

m

H1=3
(12)

In order to study, the static response of the system, a

harmonic excitation with cyclic frequency uZu1/6 was

considered.

The heightwise distribution of the statically induced wall

pressures are shown in Fig. 14 for systems with different wall

and base flexibilities. It is observed that, due to the nullification

of the soil shear modulus at the surface, the pressures

developed near the top converge to the same value for every

combination of dw and dq. Therefore, no tensile stresses are

present, making the assumption of complete bonding more

realistic. In Fig. 15, a comparison between the homogeneous

and the inhomogeneous soil is shown for the case of a rigid

fixed-base wall and a very flexible fixed-base wall.

In Fig. 16, the normalized values of the resultant force

and the corresponding overturning moment for statically

excited systems and for different flexibilities are presented.

It is obvious that the values in the case of inhomogeneous

soil are substantially lower compared to those of homo-

geneous soil and the values proposed in [19].



Fig. 16. Normalized values of resultant force and the overturning moment for statically excited wall, with different wall and base flexibilities (dw and dq), for

homogeneous and inhomogeneous soil, compared to the values proposed by Seed and Whitman in [19].
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3. Two-layers system

In the aforementioned single-layer models the

rotational stiffness of the wall foundation is simulated

by a rotational elastic constraint at the base of the wall.

It is evident that in this way, while the potential rotation

of the wall is taken into account, horizontal translation is

not allowed, thus reducing by one the degrees of freedom

of the system. That simplification is expected to have a

substantial effect on the response of the retaining

structure. In this part of the study, in order to assess

this effect, a more realistic model is examined, in which

wall and the retained soil overlie a linearly visco-elastic

soil layer. As the aim in this section is to evaluate the

role of the wall foundation, only rigid gravity walls are

examined (dwZ0).

In the analytical system, the rotational stiffness of the

wall foundation was expressed by a dimensionless relative

flexibility factor, given by Eq. (2).

By substituting the rotational constraint by an equivalent

soil layer underlying the wall and the retained soil, the

number of the problem parameters increase substantially,

since Rq can be expressed by the relation proposed by [5,6]:

Rq Z Kr y
pGfB

2

8 1 Knf

� � 1 C
1

10

B

Hf

� �
(13)

Relation (13) applies for the case of a strip footing of

width B, resting on a soil layer which has thickness Hf, shear

modulus Gf, and Poisson’s ratio nf. Furthermore, by this
replacement, the stiffness of the horizontal (transverse)

translation Kh is taken into account, implying an additional

degree of freedom in the system:

Kh y
2:1Gf

2 Knf

1 C
B

Hf

� �
(14)

Let us consider two gravity walls of the same height H,

different base width B, that retain soil layers with identical

properties, and rest on soil layers of the same thickness Hf,

but of different shear modulus Gf (so that the values of

the rotational stiffness Rq are equal for the two cases). The

simple model with the rotational constraint at the base of

the wall, hereafter referred to as spring model, suggests

(for the same excitation) that the two systems have the same

response, since they are characterized by common relative

flexibility factor dq.

In reality, the two systems will respond differently, for

the two following reasons:
†
 the values of translational stiffness Kh will defer, as is

evident by Eq. (14).
†
 the existence of the underlying soil layer affects the

fundamental frequency of the system, and therefore, the

ratio u/u1 is different in the two cases.

As it was established by the model proposed in [23], and

verified in the previous sections, the response of a wall–soil

system depends mainly on the flexibility of the system and

the ratio u/u1. Thus, a change in Kh and/or u will reflect

substantially on the system response.
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It is worth mentioning that Eqs. (13) and (14) express

static stiffness, and therefore, are ‘accurate’ for statically

excited systems (u/u1/0). In the case of dynamic

excitations the problem becomes even more complicated.
3.1.1. Numerical model

The wall–soil system considered consists of a gravity

wall, which is founded on a horizontally infinite layer of

visco-elastic soil material, bonded to a rigid base, and

retains a semi-infinite layer of visco-elastic soil material

free at its upper surface. Like in the single-layer models,

we presume plane-strain conditions, the numerical analysis

is two-dimensional, and it is performed using ABAQUS [8].

The model of the wall–soil system examined and the

corresponding finite-element mesh are both shown in

Fig. 17.

The case examined refers to a wall of height H, overlying

a soil layer of the same height. The parameters considered

are the following:
†
 the base width B to the wall height H ratio (B/H);
†
 the relative flexibility factor dq;
†
 the ratio of the dominant excitation cyclic frequency u to

the fundamental cyclic frequency u1 of the two-layered

profile.
Fig. 17. The system under consideration (gravity wall founded o
The discretization of the whole system was performed by

two-dimensional, plane-strain, quadrilateral four-noded

finite elements, while the finite-element mesh is truncated

by the use of viscous dashpots (see Fig. 17).

The properties of the retained and the foundation soil are

also shown in Fig. 17. The shear wave velocity VSf, of the

foundation soil is determined by Eqs. (2) and (3), for a given

value of dq. The critical damping ratio x, was presumed to be

5% for both soil layers. The wall was regarded as rigid with

mass per unit of surface area mwZ2.5 t/m2.

Regarding the interfaces between the wall and either the

retained or the foundation soil, it was considered that neither

de-bonding, nor relative slip occurs.

The excitation was introduced by a prescribed accelera-

tion time history on the nodes of the foundation soil-stratum

base. The case of harmonic excitation was examined:

AðtÞ Z A0 sinðutÞ; where A0 Z 1 m=s2 (15)

Two values of the excitation cyclic frequency u were

examined: uZu1/6 (almost static), and uZu1 (resonance),

where u1 is the fundamental cyclic frequency of the two-

layers profile.

The value of u1 was computed by the Rayleigh algorithm

(see Ref. [4]), which, in the case of two soil layers with
n soil layer) and the corresponding finite-element model.
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equal thickness H, has the form:

u2
1 Z

4V2
SV2

Sfð9V2
S CV2

SfÞ

H2½ð6V2
S CV2

SfÞ
2 C9V4

S�
(16)

where VS and VSf are the shear wave velocities of the upper

(retained) layer, and the foundation layer, respectively.

Two cases of wall geometry were examined (B/HZ0.4

and 0.8), and two different values of the factor dq. Note that

the two values of dq are obtained by changing the value of

VSf, while keeping constant the value of VS.
3.1.2. Static response

The heightwise distributions of the statically induced

wall pressures sstZsst(h) are shown in Fig. 18, for the

examined values of dq and B/H. In the same graphs, the

corresponding wall pressures resulting from the spring

model are also plotted.

The recovery of the exact value of the stress at the heel of

the wall was not possible due to numerical singularities in

that area. However, these values will hardly affect the

magnitude of the resultant horizontal force and of the

overturning moment.
Fig. 18. Distribution of the quasi-statically induced wall pressures for the

two-layer system and the equivalent single layer case.
It is observed that in general the increase in the degrees of

freedom of the system leads to a decrease of the induced wall

pressures. As it was already stated, the replacement of the

Veletsos and Younan rotational spring at the base of the wall

by an actual elastic soil layer introduces an additional degree

of freedom to the system: the horizontal (transverse) elastic

displacement of the wall. Consequently, the wall–soil system

becomes more flexible, which, as anticipated, leads to a

decrease in the wall pressures. Recall that this behaviour was

previously observed in the case of flexible cantilever walls

(see Figs. 4 and 5). Furthermore, the decrease in pressures is

more noticeable when the B/H ratio attains relatively high

values. This observation may be easily explained through the

following example: consider two systems with identical soil

profile geometry, and wall widths B1ZB and B2Z2B. Notice

from Eq. (13) that the rotational stiffness, Kr, is approxi-

mately proportional to the square of the wall width. This fact

implies that for a given (constant) value of Kr, the stiffness of

the soil supporting the wider wall has to be about a quarter of

that supporting the narrower wall (Gf2zGf1/4) for the

rotational stiffness to remain the same. In turn, according to

Eq. (14), the horizontal stiffness, Kh, is proportional to the

stiffness of the underlying soil, Gf. Thus, the horizontal

stiffness of the wider wall will be substantially lower than

that of the narrower wall. For the particular cases examined

herein, the horizontal stiffness of the wall with width 0.8H is

about 30% of that of the wall with width 0.4H. So, although

the two systems have identical rotational stiffness (dq), the

overall flexibility of the wall–soil system is higher in the case

of BZ0.8H, which is reflected on the resulting pressure

distributions.

3.1.3. Harmonic response

The main two reasons, for which retaining walls with

common rotational stiffness—but founded on different

layers—will respond differently for the same excitation,

were stated before. The effect of the horizontal translational

stiffness Kh was seen through the study of statically excited

systems. The impact of the underlying soil layer to the

dynamic characteristics of the system is examined by

considering a harmonic excitation in the special case of the

two-layer profile resonance.

In Fig. 19, the heightwise wall pressure distributions

are plotted for the examined values of dq and B/H.

On the same graphs, the corresponding wall pressures

resulting from the spring model are also plotted. Generally,

the remarks made for the statically excited systems apply for

the case of resonance as well. Furthermore, the dynamic

texture of the excitation amplifies the discrepancies

observed in the static case.

It is of great interest to examine the shear-base and the

overturning-moment maximum dynamic amplification fac-

tors, which are given in Fig. 20 for the examined values of

dq and B/H, and for the case of the spring model, as well.

According to the spring model, the more flexible the wall–

soil system is, the higher the dynamic amplification factors



Fig. 20. Maximum dynamic amplification factors AQ and AM for the

resultant horizontal force and the resultant overturning moment, respect-

ively, in the case of resonance (uZu1).

Fig. 19. Distribution of the wall pressures in the case of resonance (uZu1):

(a) dqZ0.5, (b) dqZ5.
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are. The consideration of a more realistic model, as the one

adopted in this study, leads to the opposite conclusion. The

discrepancy between the two approaches can be justified as

follows: In the spring model the stiffness of the rotational

constraint is real-valued, and therefore, the damping

capacity of the wall itself cannot be taken into consider-

ation. As a consequence, the impinging waves on the wall

cannot be dissipated, while the rotational oscillation of the

wall increases the wave amplitude. So, in the spring model,

the increase in the wall base flexibility leads to higher values

of the dynamic amplification factors. On the contrary, at the

present approach the rotation of the wall is governed by not

only the rotational stiffness, but the damping characteristics

(radiation and material damping) of the foundation layer, as

well. In this way, the wave energy can be dissipated by the

boundaries of both the retained and the underlying

soil. Additionally, higher values of impedance contrast a

(ZVS/VSf in the case of common density) cause larger wave

dissipation, and consequently, smaller dynamic amplifica-

tion. It is noted that quite recently Li [9,10] extended the

results of Veletsos and Younan by analysing the dynamic

response of gravity walls founded on homogeneous elastic

half-space. Thus, in addition to rotational stiffness, they

accounted for rotational damping (due to radiation and
hysterysis), and came up with conclusions similar to those

of our study.
4. Conclusions

The paper utilizes the finite-element method to study the

dynamic earth pressures developed on rigid or flexible non-

sliding retaining walls. Modelling the soil as a visco-elastic

continuum, the numerical results are shown to converge to

the analytical solutions of Wood [24] for a rigid fixed-base

wall and of Veletsos and Younan [23] for a wall that has

structural flexibility or rotational flexibility at its base, and

retains a single-soil layer.

The method is then employed to further investigate

parametrically the effects of flexural wall rigidity and base

compliance in rocking. Both homogeneous and inhomo-

geneous retained soil layers are considered, while a second

soil layer is introduced as the foundation of the retaining

system. The results confirm the crude convergence between

Mononobe–Okabe and elasticity-based solutions for struc-

turally or rotationally flexible walls. At the same time they

show the beneficial effect of soil inhomogeneity. Wave

propagation in the underlying foundation layer may have an

effect that cannot be simply accounted for with an

appropriate rocking spring at the base.

One of the limitations of both the analytical solution of

Veletsos and Younan [23] and the numerical model of this
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paper stems from the assumed complete bonding in the

wall–soil interface. This can be rather inaccurate in the case

of flexible systems, due to the development of unrealistic

tensile stresses at the interface especially near the ground

surface. It was observed, however, that such tensile stresses

diminish in the case of inhomogeneous retained soil, which

our model examined.
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